Monatshefte fiir Chemie 115, 1405--1412 (1984) *Monatshefte fiir Chemie*

The *Michaelis-Menten* **Equation in the Case of Enzyme-Catalyzed Hydrolysis of Linear Homopolymer Substrates with Different Degrees of Polymerization**

Methodi L. Chetkarov^a and Dimiter N. Kolev^{b, *}

a Faculty of Physics, University of Sofia, 1126 Sofia, Bulgaria b Department of Biochemistry, Faculty of Biology, University of Sofia, 1421 Sofia, Bulgaria

(Received 15 September 1983. Accepted 12 April 1984)

A novel theory has been proposed allowing the derivation of the equation of *Michaelis~Menten* valid in the case of enzyme-catalyzed hydrolysis of linear homopolymer substrates with varying degrees of polymerization. This equation permits the definition of the maximal rate (V) of the enzyme reaction increasing with the molecular mass of the substrate and the *Michaelis-Menten* constant *(Km)* decreasing with the increase of the number of bonds in the substrate molecule. Two new methods have been developed permitting: 1. Determination of the *Michaelis~ Menten* constant *(Km')* for a single substrate bond; and 2. Calculation of the free energy (ΔG^*) required for the formation and degradation of a single enzymesubstrate complex. The theory explains a number of experimental results published by other authors.

(Keywords: Michaelis~Menten equation; Enzym hydrolyse; Linear homopoly~ mer substrates; Maximal reaction rate; Michaelis-Menten constant; Free energy)

CJber die Giiltigkeit der Michaelis~Menten~Gleichung bei der enzymkatalysierten Hydrolyse yon linearen homopolymeren Verbindungen unterschiedlichen $Polymerisationsgrades$

Aufgrund neuer Überlegungen ist es möglich, die Gleichung nach *Michaelis-Menten* auf die enzymkatalysierte Hydrolyse von homopolymeren Körpern linearer Struktur mit verschiedenem Polymerisationgrad anzuwenden. Die Gleichung erlaubt die Erfassung der maximalen Enzym-Reaktionsgeschwindigkeit (V) , die sich mit dem Molekulargewicht des Substrates erhöht, sowie der *Miehaelis~Menten-Konstante (Km),* die sich mit zunehmender Anzahl von Verkniipfungen vermindert. Es wurden zwei neue Verfahren entwickelt: Erstens die Bestimmung der *Michaelis-Menten-*Konstante (Km') für eine Substratbindung, zweitens die Berechnung der freien Energie (ΔG^{\dagger}) für die Bildung bzw. fiir die Zerlegung eines Enzym-Substrat-Komplexes. Die Theorie erkliirt eine Reihe von Versuchsergebnissen, die von anderer Seite bereits veröffentlicht worden sind.

⁹³ Monatshefte fiir Chemie, Vol. 115/12

Introduction

During the past years several experimental studies $1-12$ have been reported on the enzyme-catalyzed hydrolysis of linear homopolymer substrates with different degrees of polymerization *(n, DP)* or with different molecular masses (M_s) . It was shown that by applying the *Michaelis-Menten* equation¹³ for the initial reaction rate (v_0)

$$
v_0 = \frac{V[S]}{Km + [S]}
$$
 (1)

in the form proposed by *Lineweaver* and *Burk 14*

$$
\frac{1}{v_0} = \frac{Km}{V} \frac{1}{[S]} + \frac{1}{V'}.
$$
 (2)

for an enzyme reaction of the type

$$
E + S \underset{k_{-1}}{\overset{k_{+1}}{\rightleftharpoons}} (ES) \xrightarrow{k_{+2}} E + P,
$$
 (3)

the determined value of the maximal reaction rate (V) increases, whereas the *Michaelis-Menten* constant *(Kin)* decreases with the increase of the degree of polymerization, respectively the molecular mass of the substrate used. In this equation E, S, P, (ES), k_{+1} , k_{-1} and k_{+2} are the enzyme, the substrate, the product, the intermediate enzyme-substrate complex and the reaction rate constants, respectively. In the maximal reaction rate V $= k_{+2} [E]$ and in the *Michaelis-Menten* constant $Km = (k_{-1} + k_{+2})/k_{+1}$ (appearing in the equation of *Michaelis-Menten)* the influence of the degree of polymerization, respectively the molecular mass of the substrate used, is not accounted for.

In the present paper an attempt is made to supplement the *Michaelis-Menten* equation, with the aim to show the influence of the molecular mass on the values of the magnitudes determined above.

Theory

From the initial weight concentrations $[E]$ and $[S]$ of the enzyme and the substrate, having molecular masses M_E and M_S , it is possible to determine ^{15,16} the number of the active centres Z_E of the enzyme and that of the reactive bonds Z_S of the substrate in a unit of volume of the enzymesubstrate solution:

$$
Z_E = a n_E = \frac{a [E] N_A}{M_E},\tag{4}
$$

$$
Z_S = b n_S = \frac{b \left[S \right] N_A}{M_S},\tag{5}
$$

where a is the number of active centres in a single enzyme molecule, b is the number of reactive bonds in a single substrate molecule $(b = n - 1)$, n_E and n_S are respectively the number of molecules in one unit of volume and *N A* is the *Avogadro* number.

By analogy with equation (3), the enzyme-substrate reaction between the enzyme active centres and the reactive bonds of the substrate in one unit of volume will be of the type

$$
Z_E + Z_S \underset{k_{-1}}{\overset{k'_{+1}}{\rightleftharpoons}} (Z_E Z_S) \xrightarrow{k'_{+2}} Z_E + Z_{S_{\infty}},\tag{6}
$$

where $(Z_E Z_S)$ is the concentration of the intermediate complexes of reactive bonds bound to the active centres, whereas $Z_{S_{\infty}}$ is the final number of unbroken bonds of the substrate after an infinite time of development of the enzyme reaction. In this equation k'_{+1} , k'_{+2} are reaction rate constants with dimensions in SI:

$$
k'_{+1}
$$
(dm³s⁻¹), k'_{-1} (s⁻¹) and k'_{+2} (s⁻¹).

The reaction rates of formation and degradation of the intermediate complexes of substrate bonds connected with enzyme active centres are:

$$
v'_{+1} = k'_{+1} Z_E Z_S = k'_{+1} (C_b^a)^a n_E n_S = k'_{+1} (C_b^a)^a [n_E^c - (n_E n_S)] n_S, \tag{7}
$$

$$
v'_{-1} = k'_{-1}(Z_E Z_S) = -k'_{-1} a(n_E n_S),\tag{8}
$$

$$
v'_{+2} = -k'_{+2}(Z_E Z_S) = -k'_{+2} a(n_E n_S), \tag{9}
$$

where n_F° and $(n_E n_S)$ are the total number of enzyme molecules and the number of the intermediate complexes in one unit of volume.

The magnitude
$$
(C_b^a)^{\alpha} = \left[\frac{b(b-1)\dots(b-a+1)}{1\cdot 2\cdot 3\cdot \dots \cdot 1\cdot a}\right]^{\sigma_s}_{\sigma_E}
$$
 (10)

is the effective number of possible combinations between the reacting active centres of the enzyme with the reactive bonds of the substrate, respectively, C_b^a is the combination free of repetition.

The exponent
$$
\alpha = \frac{\sigma_S}{\sigma_E} \ge 1
$$
 (11)

is the relation of the effective crossections of the reactive substrate bond σ_S and that of the active enzyme centre σ_E . In enzymology $a = 1$ and $C_b^1 = b$ is the case most frequently found.

From the equation for the stationary state of the enzyme-substrate reaction

$$
v'_{+1} + v'_{-1} + v'_{+2} = 0 \tag{12}
$$

93*

and equations (7), (8) and (9), the concentration of the enzyme-substrate complex (n_En_S) is determined

$$
(n_E n_S) = \frac{n_E^n n_S}{\frac{k'_{-1} + k'_{+2}}{k'_{+1}} \frac{a}{(C_0^n)^{\alpha}} + n_S}.
$$
 (13)

Taking into consideration the relationship between volume $(n_E n_S)$ and weight [ES] concentrations of the enzyme-substrate complex

$$
(n_E n_S) = \frac{[ES] N_A}{M_S + M_E},\tag{14}
$$

the initial reaction rate (v_0) of the said reaction in a weight concentration can be determined

$$
v_0 = k_{+2}[ES] = \frac{V[S]}{Km + [S]} = \frac{k'_{+2}[E](1 + M_S/M_E)[S](b - b \propto)}{\frac{k'_{-1} + k'_{+2}}{K_{+1}} \frac{a}{(C_b^a)^a} \frac{M_S}{N_A} + [S]}
$$
(15)

In this novel equation the maximal reaction rate of the reaction is determined by the expression

$$
V = k'_{+2}[E] \left(1 + \frac{M_S}{M_E} \right) (b - b \propto) \tag{16}
$$

where by $M_S \ll M_E$, the reaction rate constants k_{+2} and k'_{+2} are related by the equation

$$
k_{+2} = k'_{+2}(b - b_{\infty}) = k'_{+2} \frac{M_S - M_{S\infty}}{N_A m_1},
$$
 (17)

where b_{∞} is the number of unbroken bonds of the molecule and m_1 is the molecular mass of the monomer.

The *Michaelis-Menten* constant in a molar concentration is determined by the expression

$$
Km(M) = \frac{Km}{M_S} = \frac{k'_{-1} + k'_{+2}}{N_A k'_{+1}} \frac{1}{b^{\alpha}} = Km'(M) \frac{1}{b^{\alpha}},
$$
(18)

with $a = 1$.

The reaction rate constant k'_{+2} and the *Michaelis-Menten* constant *Kin' (M),* corresponding to a single broken substrate 'bond, can be determined graphically by plotting the reaction rate constant k_{+2} against the number of reactive bonds (b) , according to equation (17) and the *Michaelis~Menten* constant *Km (M)* against b, according to equation (18).

Fig. 1. Plots of Km and k_{+2} against the number of bonds (b) in the reaction cellulase — oligosaccharides^{9,10}

Fig. 2. Plots of *Km* and k_{+2} against the number of bonds (b) in the reaction exonuclease $-$ oligonucleotides²

Table 1. $Km'(M), k'_{+2}, \Delta G^+$, ΔE^+ and α for some hydrolases, catalyzing the

Nr.	Enzyme	\bm{M}_{F}	Substrate	n , DP	
1	Fraction from cellulase (Trichoderma viride)	62400	Unreduced oligo- saccharides	$2 - 6$	
$\overline{2}$	Exonuclease—Snake venom phosphodiesterase (Crotalus adamanteus)	20 000	Oligonuc- leotides	$1 - 6$	
3	Glucoamylase (Rhizopus delemar)	70 000	Oligo- saccharides	$1 - 15$	

Symbols used

pH		$T({}^{\circ}{\rm C})$ Km' k'_{+2} $(M/{\rm dm}^3)$ (s^{-1})	ΔG^+ ΔE^+ $(J \text{ mol}^{-1})$ (eV)		α	Ref.
5.0	30	$1.44 \cdot 10^{-1}$ 0.0221	79 500	1.09	0.65	9,10
9.7	25	$1.58 \cdot 10^{-4}$ $1.65 \cdot 10^{-4}$	73 600	$1.02 \qquad 1.11$		$\overline{2}$
5.15		$15 \qquad 3.16 \cdot 10^{-4} \qquad 8.15$	47 500	0.65	0.72	6

hydrolysis of linear homopolymer substrates with varying degrees of polymerization

From the values of k'_{+2} and $Km'(M)$ the free energy (ΔG^+) for the formation and degradation of an enzyme-substrate complex, corresponding to a certain bond in an enzyme-substrate reaction of a polymer substrate, can be estimated from the thermodynamic and transition state theory equation

$$
\Delta G^+ = \Delta G_0^+ + \Delta G = R T \ln \frac{k T K m'(M)}{h k'_{+2}} (\text{J} \,\text{mol}^{-1}),\tag{19}
$$

where *R, k, h* and T are the gas constant, the *Boltzmann* constant, the *Planck* constant and the absolute temperature at which the enzyme reaction takes place. This energy for a single substrate bond can be estimated in the electron-volt (eV) units by means of the equation

$$
\Delta E^+ = \frac{\Delta G^+}{1.2 \cdot 10^{-19} N_A} \tag{20}
$$

Appficafion

The validity of relationships deduced above can be illustrated by kinetic data reported for enzyme-catalyzed hydrolysis of linear homopolymer substrates with varying degrees of polymerization. The experi-

1412 M.L. Chetkarov and D. N. Kolev: The *Michaelis-Menten* Equation

mental values of $Km(M)$ and k_{+2} from the literature according to equations (17) and (18) are presented in Figs. 1, 2 and 3 for some enzymsubstrate reactions. The values determined for $Km'(M)$, k'_{+2} , ΔG^{\dagger} , ΔE^{\dagger} and α from these data are presented in Table 1.

Fig. 3. Plots of *Km* and k_{+2} against the number of bonds (b) in the reaction glucoamylase $-$ oligosaccharides⁶

References

- *Dahlquist F. M., Jao L., Raftery M.,* Proc. Nat Acad. Sci. USA 56, 26 (I966).
- *2 Dolapchiev L. B.,* FEBS Letters. 2, 185 (1968).
- *3 Hiromi K.,* Biochem. Biophys. Res. Com. 40, 1 (1970).
- *4 King K. W., Smibert R. M.,* Appl. Microbiol. 2, 315 (1963).
- *s King K. W.,* J. Ferment. Technol. 43, 79 (1965).
- *60no, S., Hiromi K., Zinbo* M., J. Biochem. (Tokyo) 55, 315 (1964).
- *7 Parrish F. W., Smith E. E., WheIan W. J.,* Arch. Biochem. Biophys. 137, 185 (1970).
- *8 Rupley J. A., Gates V.,* Proc. Nat. Acad. Sci. USA 57, 469 (1967).
- *9 Toda S., Suzuki H., Nisizawa K.,* J. Ferment. Technol. 46, 711 (1968).
- *lo Toda S., Suzuki H., Nisizawa K.,* J. Ferment. Technol. 49, 499 (1971).
- *11 Whitaker D. R.,* Can. J. Biochem. Physiol. 34, 102 (1956).
- *12 Whitaker D. R.,* in: Marine Boring and Fouling Organisms *(Ray D. L.,* ed.), p, 301. Seattle: Friday Harbor Symposia, Univ. Washington Press. 1959.
- *13 Michaelis L., Menten M.,* Biochem. Z. 49, 333 (1913).
- *14 Lineweaver H., Burk D.,* J. Amer. Chem. Soc. 56, 658 (1934).
- *is Tschetkarov M., KoleffD.,* Monatsh. Chem. 100, 976 (1969).
- *16 Tsehetkarov M., KoleffD.,* Monatsh. Chem. 100, 986 (1969).